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Abstract

In this paper, a very simple mathematical model of the irreversible adsorption of a sample onto the capillary wall in
capillary zone electrophoresis is investigated analytically and numerically. With it, the influence of adsorption on the
transport of sample is studied. The advantage of the model is that it contains only one parameter while other models usually
contain many more. Mathematically, the problem is reduced to the construction of a solution of a partial differential equation
coupled to an algebraic equation that imposes some restriction on the solution. Great attention is paid to the formulation of a
correct mathematical model of the process. In diffusionless approximation, an analytical solution is obtained, while the
influence of diffusion is studied by computer simulation. It is shown that in diffusionless approximation, the qualitative
results regarding the behavior of the sample zone have a rather general character and do not depend on the specific

mechanism of interaction between the substance and the wall.
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1. L. Introduction

It is well known that sample sorption onto a
capillary wall by means of ionic, hydrophobic and
other mechanisms of interaction significantly reduces
the efficiency of electrophoretic separation (see, e.g.,
Refs. [1-5]). In particular, the effect of sorption
changes the sample’s concentration profile, the ve-
locity of zone motion and the amount of substance in
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the sample zone. Many works are devoted to the
theoretical treatment of these phenomena, among
which Refs. [5—12] should be mentioned. As a rule,
almost all mathematical models are connected, to
some extent, to those of chromatography (see, e.g.,
Refs. [13—17]). When describing the sorption effects,
the chromatographic mechanism of interaction be-
tween the sample and the capillary wall, considered
as a sorbent, is assumed. Such an interaction can be
either linear [7-11], when the rate of sample ad-
sorption is proportional to its concentration, or non-
linear [5,12,14-18], when the Langmuir adsorption
isotherm is used. In the latter case, the concentration
of the sorption sites on the capillary wall is also
taken into account and thus the coefficient of pro-
portionality also depends on the sample’s concen-
tration.
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Some of these works offer a rather detailed
description of interaction mechanisms between the
substance and the wall. As a result of such detail,
these mathematical models contain a lot of parame-
ters, which are often difficult to determine ex-
perimentally or to find in the literature. In contrast,
when appropriately combined, practically any experi-
ment can be fitted with reasonable qualitative and
sometimes quantitative agreement. It is clear that the
abundance of parameters in a model is not an
advantage. Working on the models of non-linear
adsorption in diffusionless approximation [12] and
on that which takes into account the diffusion along
a capillary as well as in a narrow sorption layer [5],
we realized that similar effects can be observed using
various combinations of parameters. Such parameters
could be adsorption and desorption coefficients, the
thickness of the sorption layer, its capacity, electro-
phoretic mobilities, diffusion coefficients, etc. (see,
e.g., Refs. [5,8-12]). This means that the experimen-
tal determination of these parameters can be rather
complicated, since some special experiments will be
required to obtain isolated, ‘‘pure’ effects in which
an appropriate correlation ‘‘parameter effect” can be
achieved.

Here the following question arises. What effects
are observed by an experimenter working with
capillary zone electrophoresis (CZE) in the presence
of sample sorption effects? As a rule, he (she) has an
electropherogram with a sample absorbance profile
from which, after appropriate processing, the quanti-
ty of the sample in the zone and the velocity of zone
motion can be derived. A visible attribute of the wall
adsorption is the presence of a tail in the con-
centration profile, which often has a constant or
almost constant height (the vast majority of elec-
tropherograms observed by the authors obeyed this
rule [5]). Some parameters of process, such as
electrophoretic mobilities, diffusion coefficients and
the conductivity of the buffer solution, can be
measured or obtained from reference books and they
are usually known. Using one of the numerous CZE
models available, it is also possible to determine the
coefficient of interaction between the sample and the
buffer solution (see, e.g., Refs. [19-22]) and thus to
take into account electromigration dispersion, if
present. On the contrary, there is a lack of in-
formation on parameters and mechanisms of ad-

sorption processes. Even assuming that the sorption
mechanism obeys, e.g., the Langmuir isotherm, it is
impossible to find the adsorption and desorption
coefficients, wall capacity, etc., in the literature. At
best, only the orders of some values are known (see,
e.g., Refs. [23]). Finally, the exact mechanism of
adsorption is not known, even if it is described by
Langmuir’s isotherm in all models including our own
(5,12].

In studying wall adsorption effects, it is reasonable
to ask the following questions (the answers to some
of them are rather obvious). The first one: How does
sorption change the concentration maximum in the
sample zone (peak height)? It is obvious that the
peak height decreases, since the sample looses a part
of its mass, being stuck to the capillary wall. The
second question: Is there some deceleration in zone
motion due to sorption effects and do all the points
of the concentration profile move with the same
velocity? The answer to this question is not so
evident. It will determine whether the sample zone is
deformed due to sorption or not. The third question
is closely connected to the second: Do the sorption
effects change the width of the zone (the distance
between the zone’s leading edge and the beginning
of the “‘adsorption tail”)? Finally, do the answers to
these questions depend strongly on a particular
mechanism of sample-wall interaction? For instance,
does the qualitative behavior depend on the choice of
formula describing the sorption process (Langmuir
or non-Langmuir isotherm)? Is it possible to achieve
quite good quantitative agreement between theory
and experiment, based only on data from an elec-
tropherogram?

In this paper, we attempted to answer these
questions by offering a very simple mathematical
model of CZE with irreversible sample adsorption
onto the wall. The sorption process in this model is
characterized by only one parameter, which could
either be determined from an electropherogram or be
chosen empirically. In general, the model does not
require a detailed description of the sorption mecha-
nism. The advantage of the model is that it gives the
solution in the form of algebraic formulas connecting
all the parameters -of the problem. Thus, the answers
have a rather general character, while quantitative
results can be obtained when necessary details of the
transport mechanism are provided.
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The general organization of the paper is as fol-
lows: In Section 2.1, a basic hypothesis and a
mathematical model of the sample’s transport are
formulated. In Section 2.2, the diffusionless model is
considered and its analytical solution is obtained. All
principal conclusions about its qualitative behavior
are formulated and proved. In Section 2.3, this model
is extended to account for the diffuston effect and its
influence on the sample zone’s evolution. A specific
model of the interaction between the sample and the
wall (non-linear Langmuir isotherm) is considered in
Appendix A. It is shown that, under certain assump-
tions concerning the parameters of the model, its
solution is similar to that given by our model. Some
mathematical details used in the text of the paper are
given in Appendix B.

2. Theory
2.1. The simplest model of irreversible adsorption

As mentioned above, one of the most characteris-
tic features by which sample adsorption manifests
itself is the existence of an ‘‘adsorption tail” in the
electropherogram. In many cases, the height of this
tail or, in other words, the shift of the base line after
the sample peak is constant with time. This height is
actually a unique parameter of the sorption effect and
is available directly from the electropherogram. Even
in cases where the real mechanism of interaction is
known or such a mechanism is supposed (see, e.g.,
Refs. [5-12]), the parameters of the sorption process,
for instance, the adsorption and desorption coeffi-
cients for Langmuir’s isotherm, are rarely available.

The fact that the height of the ‘“‘adsorption tail” is
constant suggests that sample desorption is small
compared to its adsorption during an electrophoretic
run. Of course, this is not valid for all samples and,
perhaps, is valid only for relatively short time
periods compared with the time required for electro-
phoretic runs. In our model, we assume that the
desorption is so minute that it can be neglected, i.e.,
the sorption has an irreversible character. Experi-
ments with different sample concentrations [5]
showed that approximately the same amount of
sample was attached to the capillary wall irrespective
of its initial concentration. At this point in our

model, we suppose that the amount of substance
attached to the wall does not depend on its con-
centration in the solution, provided that the latter
exceeds some threshold value. One can suppose that
the capillary wall has a certain capacity, due to a
certain number of adsorption sites, and that when all
of these sites are occupied the wall is saturated. This
state of saturation corresponds to the amount of
sample on the wall and, hence, to the height of the
adsorption tail. At this point, it is necessary to
assume that the process of adsorption is much faster
than those of electrophoretic motion and diffusion
and that saturation of the wall occurs almost instanta-
neously. The assumptions above allow us to describe
the adsorption by introducing the concentration of
wall saturation, which, in experiments, is observed as
a tail. It should be noted that the same conclusion
may be derived by analyzing a non-linear Langmuir
isotherm (see Appendix A). However, we intention-
ally do not provide a detailed description of the
interaction process since for the construction of a
correct mathematical model, as will be shown, the
detailed mechanism of interaction is not important.

Let us describe the transport of sample in CZE in
one-dimensional approximations by means of the
usual transport equation:

c,t1(c)=ec,, ()

Here ¢ is the molar concentration of the sample, I(c)
is the molar flux density under the impact of an
external force, € is the sample’s diffusion coefficient.
The subscripts x and ¢ here and below denote partial
derivatives of x and ¢, respectively. We will notice
here that, speaking about an external force, migration
under the action of an electric field is usually
assumed; however, the flux density, I(c), can also
include terms connected with the motion of liquid by
external pressure and by electroosmotic flow. We
suppose that the chemical reactions in the solution
and the interaction between the sample and the wall
are instantaneous and, for this reason, Eq. (1) does
not contain the source term that usually describes
adsorption [5,12]. The flux density, I(c), should be
equal to zero when the concentration of the sample
equals zero; it is quite natural that in the absence of a
substance, its flux is absent too. In other words, the
following relationship must be satisfied:

1(0) =0, (if ¢ # 0 then I(c) > 0) 2)
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To be more specific, let us suppose that sample
motion occurs from left to right. The concentration
of the sample attached to the wall is denoted as s.
Actually, it is the height of the ‘“adsorption tail”
registered on the electropherogram, which, for Lang-
muir adsorption (see Appendix A), is the concen-
tration of adsorption sites or the capacity of the wall.
Since we assume that adsorption is irreversible, the
substance stuck to the wall cannot go back to the
solution and does not participate in the transport of
sample by means of an external field. It means that
if, in some moment, the sample with concentration
c(x, r)=s occupied the region x €M (zone) and then,
under the action of the electric field, it moved away,
part of it, with concentration s, would remain
attached to the wall. This requirement imposes the
algebraic restriction c(x, t)=s for the solution of Eq.
(1) in any region, whenever occupied by the sample.
It is clear that this restriction contradicts the relation
shown in Eq. (2), as /(c)#0 at 0<c=s. Hence, in
order to account for the effect of sticking, it is
necessary to redefine the expression for flux density.

The natural way to redefine the flux density while
preserving the mathematical correctness of the prob-
lem is to subtract the portion describing the migra-
tion of the sample, which, in effect, is attached to the
wall:

I(c) — I(s), =
w0={"" 6" 0 E3L, ®

Here, i(c) is the molar flux density accounting for the
sorption effects. With such a definition, the part of
the substance attached to the wall is excluded from
the transport under the impact of an electric field.

At a first glance, such redefinition does not change
Eq. (1), since i (c)=I(c) for c=s. However, in
reality, the new flux density i(c) is not a smooth
function, as its derivative is discontinuous at c=s.
This fact makes the properties of solution of Eq. (1)
completely different. It will be shown for the diffu-
sionless model considered in Section 2.2.

It is necessary to note that this is a unique way to
correct the problem. For instance, it is impossible to
do this by introducing the source term describing
some chemical reactions, since the assumption of
their instantaneous action sets this to zero. If not,
there will be relaxation effects, bringing the system
to a state of equilibrium, but this contradicts what

has been specified above. Ways of redefining the flux
density are discussed in more detail in Ref. [24], in
which a strict mathematical treatment is given for the
effect of a ‘“‘chemical trap”, as observed in electro-
phoresis [25]. The effect described in Refs. [24,25] is
in many aspects similar to that examined in the
present paper and, in fact, these works stimulated the
development of the simplified model of adsorption,
while the mathematical methods elaborated in Ref.
[24] allowed us to obtain the solution in the simplest
form.

Certainly, the problem of redefinition of flux
density results from the absence of information about
the mechanism of interaction between the sample
and the wall. In particular, in Appendix A, a
mathematical model is presented for which infor-
mation about the mechanism of interaction that leads
to the condition /(s)=0 is shown. However, in most
situations, the flux given by Eq. (3) seems to be
more natural. At least, this way does not require any
additional information and, hence, is more universal.
Moreover, it will be shown that the results given by
a general model and the model presented in Appen-
dix A differ insignificantly from each other in cases
where the concentration of sample is small. It is
worth noting that it would be more logical to
redefine a total flux density, including in it the
diffusion flux as well. This will be discussed in detail
later (in Section 2.3).

When accounting for the above considerations and
adding the initial conditions typical for ZE problems,

Eq. (1) can be rewritten as:
c,tilo)=ec, c=s 4)

xx?

. Ic)—I(s)=0, c=s

ic) ={ 0 c=<s )
cy, X €10,1,], c¢,=const.

cli=o ={ (()),x Z [0, l(j) ’ (6)

where ¢, is the initial sample concentration in zone
region [0, /;] and ! is the initial zone width.

2.2. Diffusionless model

It is well known that the diffusionless approxi-
mation is acceptable for studying the transport
processes in electrophoresis for time intervals that



M.Yu. Zhukov et al. | J. Chromatogr. A 766 (1997) 171185 175

are considerably smaller than the characteristic time
of diffusion (see, e.g., Refs. [21,22]). In particular, it
works well when concentrated sample is considered
and the electromigration dispersion is significant,
since the shape of the concentration profile, the
velocity of the zone’s leading and trailing edges are
basically determined by non-linear effects of inter-
action between the sample and the buffer solution.
Diffusion leads to the decrease in the concentration
maximum in the peak and to smoothing of con-
centration gradients in the profile, however, the peak
shape remains essentially the same. Some advanced
mathematical methods exist for diffusionless models
that allow analytical solutions to be obtained, and
these significantly simplify the analysis of the zone’s
evolution. This is why we first consider the problem
described in Egs. (4-6), in which the diffusion term
is omitted, i.e., £=0, while electromigration disper-
sion is not negligible. Eqs. (4-6) are thus reduced to
a quasi-linear hyperbolic equation, which could be
solved by one of the methods described in Refs.
[26-29]. A survey of such methods applied to
chromatography is given in Ref. [18]. Some exten-
sion of these method was proposed by us [24], for a
case with algebraic restrictions.

2.3. Mathematical model

It is known that to correctly state the diffusionless
problem, some additional relationship concerning
discontinuities, known as the Rankine-Hugoniot
relation, and also additional stability conditions for
these discontinuities (see, e.g., Refs. [26-29], par-
ticularly in electrophoresis [12,19-22]), are required.
The discontinuities in solution can be due to initial
discontinuities in the concentration profile (pulse
profile). Together with these relations, Eqs. (4-6)
can be rewritten as:

¢, +il)=0,c=s (7)
i(c) = {I(C) N o e=s (8)
Vil = lio), V=", )
Flex@) =0, =V =i'(cx(t) + 0, 1)) (10)

_feqx €10, Ly), o =const., c, =5 1"
cl-0=1 0,x &[0, 1] (11

Here, the symbol [..] denotes the jump of the
function value across the line of discontinuity x =
x(®), ie., [fl=fx@)+ O) ~ flx(t) — 0,t); V is the
velocity of the discontinuity propagation, and the
flux derivative is calculated with respect to ¢. Eq. (9)
is the so-called Rankine-Hugoniot relation and it
corresponds to the mass conservation law written in
terms of concentration on the line of discontinuity.
The inequality (Eq. (10)) is a stability condition for
discontinuity, which means that the group velocity of
the substance (i.e., i'(c)) to the left of the line of
discontinuity should be higher than the velocity of
discontinuity propagation, which, in turn, should be
higher than the velocity of the substance to the right
of the discontinuity. This condition guarantees the
existence of a discontinuity. When it is not satisfied,
the initial discontinuity will transform into the so-
called rarefaction wave. The Rankine-Hugoniot rela-
tion emphasizes a difference between the flux den-
sities I(c) and i(c), as defined by Eq. (8). In par-
ticular, it is now possible to write the conditions on
the boundary between regions in which in one the
concentration is c=gs, while in the other it is ¢ =0,
correctly. The first region contains the sample that is
able to stick to the wall, while the second region is
free of sample and therefore there is no sample on
the wall.

Let us introduce the following designations, which
are required for the inequalities below to be valid:

v(c)={i ©=I(C), c=s

0,c<s, c=0 (12)

ve)>0,v'()=i"(c)>0

Here v(c) is a group velocity of the points on the
concentration profile everywhere except for the
discontinuity. It is this velocity that appears in the
stability condition of discontinuity (Eq. (10)). Strict-
ly speaking, it is possible not to define the velocity
v(c) for ¢<s, however, such a definition simplifies
the algorithm of the solution. It is sufficient to define
only v(0). The value v(0) is necessary for substitu-
tion into Egs. (10,15).

The inequality, v’(C)>0, limits our considera-
tions to the case in which the sample profile is
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fronting and its leading edge is sharp, ie., dis-
continuous, while the trailing edge is diffuse, due to
non-linear electromigration effects. It corresponds to
the case encountered most often in electrophoresis in
which the molar conductivity of the sample zone is
less than that of the buffer solution (see, e.g., Refs.
[19-22]). The case where v'(c) <0 is solved similar-
ly and does not cause any difficulties.

2.3.1. Evolution of the concentration profile

The theory of how to solve Egs. (7-11) has been
extensively treated in mathematical literature devoted
to quasi-linear hyperbolic equations (see, e.g., Refs.
[26-29]), and in works on electrophoresis (see, e.g.,
Refs. [19-22]). Some specific methods for problems
with algebraic restrictions are developed in Refs.
[24,25]. For the sake of simplicity, we present, later
on, only the scheme of how the solution may be
constructed and the figures illustrating the evolution
of the concentration profile. Mathematical details of
solution will be omitted. Qualitative features, such as
the shape of the concentration profile, will be similar
for an arbitrary equation for flux density, satisfying
the conditions of Eqgs. (8,12).

We determined the concentration profile in a
moving zone by the equation:

X x x
v(c)=7, c(x, t)za(T),z=7,sScSco (13)

Here, a = a(z) is the so-called automodeling solution
of Egs. (7-12), corresponding to the rarefaction
wave,; z is the automodeling variable. The function
a(x/t) describes the concentration profile everywhere
that it is non-constant. In practice, instead of the
function a = a(z), it is more convenient to use the
inverse function, z = z(a) = v(a).

The solution of Eqs. (7-12), at t=+0, ie,
immediately after the application of an electric field,
is shown in Fig. 1.1b>* (in Fig. 1.la the initial
concentration profile, =0, is shown). The points a,
B and vy of the concentration profile move according
to the laws x = x, (1), x = x4(t) and x = x,(t).

* Fig. 1.1, 1.2 have a demonstrative character. The value s=0.75
mM was chosen in order to show the presence of an ‘‘adsorption
tail”.

c(xt)

|
|« Adsorption tail

c(xt)
1

T T

o 2 ry x
Fig. 1. Evolution of a sample concentration profile for different
time moments; with (1.1) and without (1.2) adsorption. The thin
dashed line shows the peak apex evolution in the case of
adsorption (s=075), thick dashed line shows the peak apex
evolution in the absence of adsorption (s =0). For further explana-
tion, see text.

X, (1) = v(s)t, x4(t) = v(co ),

x (0 =1,+ VWt

(14)

Here, V,, is the velocity of the zone’s leading edge
(see Fig. 1.1b). The value of V; is determined by Eq.
(9), on the line of the discontinuity x = x,(f), where
clx () — 0,1) = ¢4 and c(x (1) + 0,0) = 0. It is easy to
check that the validity of inequalities (Eq. (10))
follows from Eq. (12) (see also Appendix B):

Ciley)  ley) = 1)
T, Co

=0 (15)

,0(ce) >V, >u(0)

The solution of Egs. (7-12) for the interval x €
[0.x,(r)] is a constant c¢=s, for the interval x €
[x, ().x5(1)] it is ¢ = a(x/1) and for the interval x €
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[x5(1),x(1)] it is ¢ =c,. The region x € [0,x,(#)] will
be called an “‘adsorption tail”.

The shape of the concentration profile shown in
Fig. 1.1b will be changed in the moment ¢, when the
point x = x4(¢) reaches the point x = x_(z).

t=——l°——x
O u(cy) — VT

=0(coMgs [xy = x5(t0) = x,(2,)] (16)

Here, x,, is the coordinate of the zone’s leading edge
in the moment of interaction ¢, (see Fig. 1.1c).

The further evolution of the concentration profile
is shown in Fig. 1.1d-f. For comparison, the con-
centration profile in the absence of adsorption (s =0)
is shown in Fig. 1.2. The dotted lines in Fig. 1.1 and
Fig. 1.2 correspond to the maximum concentration
for both s=0 and s7#0. As previously stated, the
solution on the interval x € [x,(¢),x5()] (see Fig. 1.1
d) is determined by the expression ¢ = a(x/t), how-
ever, unlike in Fig. 1.Ib, the law of motion of the
leading edge is different and it is determined by the
differential equation (Eq. (9)) (see also Ref. [12]):

dxs()  ics(t)) EX0)
dr o0 Y ‘”( 7 )

(7

with the initial condition:
x5(t,) = x4 (18)

Here ¢, is the sample concentration on the line of
discontinuity, actually, it is a maximum of the
sample’s concentration in the zone. Fortunately, the
Cauchy problem, Egs. (17,18), can be solved using
analytical methods (see, e.g., Ref. [24]). The solution
may be written by using implicit functions:

lyco

v(esMest) —iles ) =~ x) = vles ) (19)

It is easy to prove that the formulas in Eq. (19)
provide the solution to Eq. (17), which satisfies the
condition (Eq. (18)). For this purpose, it is sufficient
to find a derivative of Eq. (19) on ¢, taking Eq. (16)
into account and the equality c,(t,) = ¢, (for details
see Appendix B). As in the case of Eq. (13), in order
to build a graph, for instance, c; = c,(t), it is not
necessary to solve Eq. (19). It is easier to build the
inverse function t=t(cs) orx = x(cs) = v(cs)Hcs).
Using this method, the inverse function for the

maximum concentration, cy(t), with and without
adsorption, was determined and is shown in Fig. 1.1
and Fig. 1.2 (dotted lines).

The evolution of the concentration profile (shown
in Fig. 1.1c—¢) occurs up to the moment #,, when the
trailing edge of the rarefaction wave [the line x=
x,(t) will reach its leading edge [the line x =x,()].
Obviously, at this moment, the concentration is equal
to c,(t,)=s. The value of ¢, is derived by using Eq.
(19) and taking into account that i(s)=0 (see Fig.
1.1f):

_ locq

K SU(S) ? ‘xx = COIO (20)

Here, x_ is the point where the edges of the rarefac-
tion wave will meet each other. Further evolution of
the zone does not occur, since the sample is com-
pletely stuck to the wall and the equation sx, = ¢,/
is, in essence, the mass conservation law.

2.3.2. Analysis of the typical evolution law for the
concentration profile

Despite the fact that the mechanism of interaction
between the sample zone and the buffer solution is
not known, i.e., the specific expression for the flux
density is not defined and the mechanism of inter-
action between the sample and the wall is not
specified, it is still possible to derive some general
laws for the evolution of the concentration profile.
Of course, more detailed and precise information can
be obtained in the case when the formula for I(c) is
provided, in our case we took this to be:

Ke)=c(l +ke), k=0

Here, & is the coefficient of interaction between the
sample and the buffer solution. Further on, for the
values ¢, x,, t,, X, c5(t), x5(t) and V,,, we will use the
notations 1,(s), x,(s), £,(s), x,(s), cst,5), x4(t,s) and
V,(s), emphasizing their dependence on s. All of the
previous formulas are as valid at s=0, when ad-
sorption is absent. Let us now pass from spatial
coordinates to the temporal ones that represent the
detector readings and let us denote by y the coordi-
nate of the detector. The maximum sample con-
centration in the zone is denoted as 6. In our case,
this is the concentration c,(t) at the point x=y for an
appropriate time moment. The detector should be
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placed in the capillary so that it could register the
motion of the zone, ie., [, <y =ux/(s). Where y>
x,(s), the substance will never reach the detector,
since it will be completely adsorbed before the point
x =x(s) (see Fig. LIf). The trailing edge of the zone
registered by the detector is obviously determined by
the function a(y/t) (see Eq. (13) Fig. 2). The
simulation results presented in Fig. 2 correspond to
the following parameters: initial sample plug length
and its initial concentration are equal to unity, k=
0.27, s=0.01, detector position y=§=37.3.

Below we formulate some general statements valid
for the evolution of the sample zone, regardless of
the specific expression for the flux density /(c).

(1) The part of the concentration profile described
by the rarefaction, wave has the same form for all
values of s. The velocity of the points for this part of
the profile does not depend on s.

This evidently follows from Egs. (12,23). As can
be seen from Fig. 2, the part of the electropherogram
that follows the leading edge (¢t > 1. (s,y)) is identi-
cal for electropherograms, independent of the con-
centration s. The difference between electropherog-
rams will be in the moment at which the zone

04 —
without adsorption s = 0

i Leading edge with adsorption s = 0.01
—————— with adsorption s = 0.01

and diffusion E = 0.001

cly.t)

1tmin(sry)§
trin (0, y) ‘ Lmax (S, Y)

Fig. 2. Comparison of three different electropherograms without
adsorption (thin solid line), with irreversible adsorption in the
absence of diffusion (thick solid line) and with irreversible
adsorption with diffusion (dashed line). For further explanation,
see text.

reaches the detector, i.e., in t_,,. Fig. 2 shows two
electropherograms corresponding to zero adsorption,
s=0 (thin solid line), and non-zero adsorption, s =
0.01 (thick solid line). The moment, ¢, when the
zone’s leading edge reaches the detector is deter-
mined by the formulas in Eq. (19), which, at x=y,
have the form:

lyco
v(g)a - 1(0) = t . 4 y = U(O)tmin’ tmin
=10 ¥), 0=0(s, ) (21)

By excluding 7, (s), it is possible to derive the
function #=86(y), giving the dependence of con-
centration maximum versus the detector position.
Similarly, by excluding 6, the function ¢ =
! nin(s,y) is derived. These functions are plotted in
Fig. 3 for several values of s. The thick lines
correspond to the function 6(s,y) at s=0, 0.01, 0.02,
0.03, 0.04, 0.05 and the thin lines correspond to the
function 7,,(s, y) at s=0, 0.01, 0.02, 0.03, 0.04,
0.05. The following inequalities can be easily proven
(see Appendix B):

00
6(s, y) < 0(0, y), T 0 (22)

tnenl(Sey)
b — 8(s,y) =

Fig. 3. The dependence of the concentration maximum & (thick
lines) and 7., (thin lines) on the effective length, y, of the
capillary, for different values of wall capacity, s. For further
explanation, also see text.
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min

at
Loin(Ss ¥) > 1000, y), as >0 (23)

Two other statements obviously follow from these
inequalities:

(2) The concentration maximum registered by the
detector decreases with the increase in s.

(3) The velocity of the zone’s leading edge
decreases with the increase in s (t_. increases with
increasing s).

As an example, the behavior of functions ¢ (s,y)
and 6(s, y) for y=35 is shown in Fig. 4. The
statement 2° means that a part of the substance
remains in the ‘‘adsorption tail” and it is rather
obvious. The statements 1° and 3° mean that the
adsorption retards the leading edge of the moving
zone but it does not effect the motion of the rest of
the zone behind it. In reality, the substance is not
retarded but continuously removed from the leading
edge. Let us denote as ¢, the moment when the
trailing edge of the zone reaches the detector. It is
obvious that in the case of adsorption, this point is
chosen as the coordinate of the point x, (¢ ,.) =V,
where the sample concentration is ¢ = 5. Thus from
Eq. (14), we have:

min

' _ Yy atmax - —yv'(s) <0t
max - p(s)’ 9s U,(s) max

= Lax(8, Y) 24

(4) The velocity of the trailing edge increases with
the increase of s (t,,. decrease with increasing s).
The functions ¢, (s,y) and 6(s, y) for y=y are

presented in Fig. 4. Since the function v(c) is
monotone, i.e., v’'(c) >0, then:

tmax(s’ y) < tmax(o’ y) (25)

Let us define as W(s) the width of the zone in the
electropherogram in (c,t) coordinates by the formula:

Y y

W) =1,.,06) =t )= "7 — 0—(9; (26)

0)
The “width” of the zone in the electropherogram is
measured in units of time. The physical width of the
zone is defined as x (1) — x,(r) at r=1,.

The next statement is valid:

(5) The width of the zone in the presence of
adsorption is less than the width of the zone without

! Enax (S,Y)

06 —

04 —

)
1 0(s,y)
0.2 — \ -1
|
1
1
|

0.0 . —+ I I — p o
0.00 0.01 0.02 0.03

Fig. 4. The dependence of 6, ¢, and ¢, on the wall capacity, s,

for a fixed capillary effective length of y=37.3. For further
explanation, see text.

adsorption. The width of the zone decreases with
increasing s.

Indeed, we can determine from Eqgs. (12,22,23,26)
that W(s) < W(0). The second statement, i.e., W'(s) <
0, is proved in Appendix B. Thus, adsorption reduces
the zone width and, it might seem, improves the
efficiency of the system. It can be seen clearly in Fig.
4 that the difference ¢, —¢ ., decreases with in-
creasing s. The width of the zone becomes zero in a
finite interval of time because the zone substance is
pumped to the near-wall layer. In a normal sepa-
ration system, the zone width never equals zero and,
as a rule, it increases with time.

2.4. Influence of diffusion effect on the
concentration profile

In Section 2.3.2, results were obtained for a wide
class of flux functions, I=1(c), for which v(c) >0,
v'(c)=1i"(c) >0, assuming that diffusion is absent.
Qualitative results for a particular sample substance
and buffer composition can be easily calculated,
when the formula for /(c) is provided. In our case,
the following expression was used:

Ic)=c(1 + ke), k>0 27
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In this section, the influence of diffusion effect on
the evolution of the concentration profile is analyzed
and no conditions are imposed on the & value. Egs.
(4-6), presented in Section 2.1 are solved by using
numerical methods. This model requires some spe-
cification. As already mentioned, it would be more
natural (and more correct) not to redefine the flux
density /(c), but rather the full flux density, including
the diffusion term, that is:

L= —é&c, +1(c)

In the region with a concentration of ¢ >s, it is
necessary to keep the expression in the form:

lyw= —&, tilc),c=s

while in the region ¢ <s, it is necessary that the flux
be equal to zero:

L =0,c<s

For this purpose, it is sufficient to only redefine the
derivative c . using the following formula:

Cor €C=S
c =
* 0, c<s

However, such redefinition is rather dangerous, as
the diffusion term e&c_, becomes a non-smooth
function. Generally speaking, it contradicts the pur-
pose with which the diffusion term was introduced
into equations. It is this term that should provide the
high smoothness of the solution and eliminate the
discontinuities.

The results of simulations for the diffusion coeffi-
cient €=2-10"* and different k values are presented
in Fig. 5. Unlike in Section 2.3.2, here all three
typical situations were simulated, i.e., when the
sample peak is tailing k=0.3, fronting k= —0.3 and
Gaussian k=0.0. Initially the sample profile had a
pulse shape. Solid lines represent sample concen-
tration profiles along the capillary column, for which
the wall capacity factor was assumed to be s=0.03.
For comparison, corresponding profiles are aiso
drawn (dashed lines) when wall adsorption is absent.
Evidently, the principal conclusion formulated in the
previous section are equally valid in the case with
diffusion. It is seen that wall adsorption retards the
propagation of the sample’s front edge compared to
that in the adsorptionless case. At the same time, the

k=0.3

02 —

00 LA B
0.0 02 04

Fig. 5. Concentration profiles along the capillary column with
(solid lines) and without (dashed lines) adsorption for different
parameters, k. Diffusion coefficient, e=2-10""%, wall capacity,
5$=0.03, time r=0.6. Initial concentration profile was a rectan-
gular pulse (on the left). For further explanation, see text.

rear edge remains practically the same. Consequent-
ly, the width of the sample zone is always narrower
with adsorption. It is worth noting that Statement 2 is
not valid for k<0, since in this case, Eq. (12) is not
true. It can be seen from Fig. 5 that the peak
maximum for k= —0.3 remains the same in the
presence and absence of adsorption. The other
interesting feature is that in all cases the peak’s
leading edge becomes sharp.

The effect of diffusion itself leads to a little
lagging of the sample peak compared to that ob-
served in the diffusionless case (see Fig. 2, dashed
line, in comparison with the solid thick line). A more
pronounced difference can be seen in the trailing
edge, where diffusion results in much stronger
tailing. The sample peak is lower but it preserves its
shape. As can be seen from the graphs, the redefini-
tion of the flux did not produce significant changes in
the case of diffusion. This means that the time
considered is much shorter than the characteristic
time of diffusion. On the other hand, the non-linear
effects leading to a characteristic triangular peak
shape dominate the diffusion.

As a concluding remark one can specify that the
problem of sample adsorption onto the capillary wall
is complex and has not been resolved yet. Different
methods for controlling the state of the capillary wall
were proposed, among them, buffer changes and
additives; the use of organic solvents; adsorption of
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neutral and/or charged macromolecules (including
surfactants) to the wall; chemically bonded phases,
etc. An extensive review of these methods may be
found in Ref. [30]. None of them completely elimi-
nates the sample’s adsorption, hence, a further study
of this phenomenon is necessary. The simple mathe-
matical model of sample adsorption offered above
may be useful in understanding some general fea-
tures of sample behavior, since it is applicable to a
wide class of interaction mechanisms and does not
require detailed information.

3. Experimental and results
3.1. Materials and methods

All chemicals were of analytical-reagent grade;
acetic and formic acids, potassium hydroxide and
cytochrome ¢ were purchased from Merck (Darm-
stadt, Germany) and poly-L-lysine was from Sigma
(St. Louis, MO, USA). Samples were prepared by
dissolving them in the running buffer.

Experiments were performed using a Beckman
P/ACE System 5000 capillary electrophoresis unit
(Palo Alto, CA, USA), running under GOLD Soft-
ware (Beckman). An untreated fused-silica capillary
(27.0 cm (20.1 cm effective length)X75 pm LD,
Polymicro Technologies, Phoenix, AZ, USA) was
used. Electropherograms were collected using a UV
detector set at 214 nm. A voltage-stabilized regime
was used in all experiments. The temperature of the
liquid-cooled capillary was maintained at 25°C.
Between runs, the capillary was washed with 0.1 M
NaOH for 2 or 5 min and then with buffer for 2 min.
Injection of sample was by means of pressure excess.

3.2. Results

In order to evaluate how the theoretical predictions
correlate with experimental data, a series of experi-
ments were performed. It should be noted that, in
general, the reproducibility of results depends strong-
ly on the capillary treatment performed between the
runs and the environment to which the capillary
surface was subjected previously.

Unlike theoretical studies, it is very difficult, if
indeed possible, to perform two experiments under

the same conditions so that in the first the sample—
wall interaction is zero while in the second it exists.
In other words, if the sample adsorption is initially
negligible, one should change the pH value of the
buffer or its ionic strength or something else to
increase the adsorption, but this will inevitably
change other characteristics of the sample’s migra-
tion. This is why a series of experiments was
performed in which the only parameter changed was
the injection time. Experimental electropherograms
with injection times of 1, 2 and 3 s are plotted in Fig.
6. Sample peaks demonstrate strong tailing due to
adsorption. As expected, shorter injection times gave
lower peaks, as a bigger portion of the substance was
attached to the wall before the peak arrived at the
detector. Due to adsorption, sample peaks with
shorter injection times are retarded, thus, their front
boundary arrives at the detection point later. How-
ever, unlike theoretical predictions, the part de-
scribed by the rarefaction wave (to the right of the
peak apex) is not the same for all three runs. We
assume that the reason for this could be the finite rate
of adsorption—desorption kinetics (the model as-
sumes that the adsorption is infinitely fast, while the
desorption rate is zero). In fact, one should bear in
mind that first the sample is adsorbed from the liquid
volume near the capillary wall and then some time is

0.012 —

0.008 —

0.004 —1

Absorbance (214 nm)

0000 =TT T
[} 2 4 6 a 10 12
Time (min)

Fig. 6. Effect of different injection times on the absorbance
profiles of the sample (0.5 mg/ml of cytochrome ¢): | s, solid
bold line; 2 s, solid thin line, 3 s, dashed line. The buffer solution
was 100 mM formic acid titrated to pH 3.5 with NaOH. The
running voltage was 5 kV and the capillary was washed for 5 min
with 0.1 M NaOH in-between runs.
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necessary for the substance to diffuse from the
region close the capillary axis towards the wall, in
order to be adsorbed. This time can be roughly
estimated as a characteristic diffusion time 7, = r’/
D, where r is the radius of the capillary and D is a
diffusion coefficient. For the typical values, 2r=75
pm and D=1-10""" m?/s, it is 7., =14.1 s that is
not negligible.

The above experiments demonstrated a rather
strong sample interaction with the wall. We per-
formed some experiments in which this interaction
seemed to be weaker. A series of runs with poly-L-
lysine was performed in acetate buffer. Initially the
interaction was very weak and the baseline on the
electropherogram returned to its initial level after the
peak passage (Fig. 7, solid line). After several
washings with a 0.1 M NaOH solution, we got
evident signs of the sample wall interaction, i.e.,
baseline shift and a decrease in the sample peak area
(Fig. 7, dashed line). Peak integration showed that,
due to interaction, about 72% of its mass was lost,
assuming that the first peak (solid line) did not loose
it. If we suppose that the capillary wall is uniformly
covered with a layer of substance from the inlet to
the detection point (approx. 20 cm) and that the
amount of substance on the wall is such that it
corresponds to the shift in the baseline, we de-

Absorbance (214 nm)

0000 1 T T ]

Time (min)

Fig. 7. Poly-L-lysine (0.5 mg/ml) absorbance profiles with zero
sample loss due to the sample—wall interaction (solid line) and
when a part of it was lost on the wall (dashed line). The running
buffer was 100 mM acetic acid titrated to pH 4.0 with NaOH; the
voltage applied was — 10 kV, the injection time was 1 s and the
capillary was washed for 5 min with 0.1 M NaOH in-between
runs.

termined that the loss of the sample mass should be
ca. 11%. Such a big difference in these two estima-
tions may be attributed to the fact that the sample is
adsorbed to the wall non-uniformly, perhaps its
larger part was attached to the capillary wall close to
the inlet end.

4. Conclusions

A simple one-parameter mathematical model of
sample sorption onto a capillary wall is proposed in
this paper. The model is based on the assumption
that sample adsorption is irreversible and the unique
parameter characterizing this process is the number
of sorption sites or the sorption capacity of the wall.
This parameter can be calculated directly from the
electropherogram from the baseline shift before and
after the sample peak. Mathematically, the model is
described by a partial differential equation with an
algebraic condition, which is eliminated by redefin-
ing the sample flux term. An advantage of the model
is that it allows some preliminary conclusions to be
drawn about the sample’s evolution, without having
detailed information about its transport mechanism.
Another advantage is that the solution can be ob-
tained in the form of algebraic formulas connecting
all the parameters of the problem. It is shown that in
a diffusionless approximation, sample adsorption
reduces the peak height and the velocity of the
zone’s leading edge (when the peak is tailing).
However, the rear part of the concentration profile is
not effected by adsorption. The diffusion effect
slightly retards the sample zone, simultaneously
giving a more tailing profile. It is shown that in the
limiting case of irreversible adsorption, Langmuir
adsorption practically coincides with the described
model.
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Appendix A

Model of non-linear Langmuir adsorption

In this section, we compare the model proposed in
the paper with a usual model of non-linear ad-
sorption, showing that, for small concentrations, the
difference between the models is insignificant.

Let us consider a model of adsorption of a sample
onto a capillary wall, corresponding to Langmuir’s
adsorption (see, e.g., electrophoresis models [5,12]
and chromatographic models [13-18]):

w+tq),+I1w=010)=0 (A.l)

q, = k(s — Qu —kyq (A.2)

Here u is the concentration of sample in the liquid
phase; g is the concentration of sample attached to
the wall (solid phase); s is the amount of adsorption
sites per unit area (capacity of the wall); &k, and k,
are adsorption and desorption coefficients; (¥ + g) =
¢ is the total concentration of sample. We assume
that the process of adsorption has an irreversible
character and that desorption is absent, i.e., k;=0. In
addition, we consider that the time scale of ad-
sorption is very small compared to that of the
processes associated with external forces; e.g., elec-
trophoretic migration, i.e., k,— + .
Then from Eqgs. (A.2) we have:

k,su
g=s, u=c—g=c—s, I=Futk,

Substituting the obtained expression in Egs. (A.1),
we derive:

c,tl(c—s5)=0 (A3)

Note that I(c —s)|._, =0, ie., the requirement for
the absence of sample transport by means of an
electric field is automatically satisfied when ¢ =s.
For small concentrations of ¢ and s, by performing a
Taylor series expansion and keeping only the terms
up to the second order of magnitude, we have [only
if 1(0)=0}:

Ic — s)=I(c) — I(s),
since

Ic—5)=10)+I'(0)c—s)+..=I'(0)c—s)+..

Ke)—I(s)=1(0) + I'(O)c + ... — K0) = I'(0)s — ...
=71'(0)c—s)+ ...

Thus, the model described in the paper does not
differ much from the model expressed in Egs. (A.1),
(A.2) for small concentrations. However, as already
stated, it has an advantage, since it does not require
specific information about the mechanism of sam-
ple—wall interaction given, for instance, by Eqgs.
(A.2). Of course, in cases in which the mechanism of
adsorption is known (e.g., Eqs. (A.2)) and the values
of k,, k, and s are also known, it is necessary to use
the model in Egs. (A.1), (A.2). In contrast, in the
absence of such information, the model shown in
Egs. (7-12) is preferable, since it still offers some
qualitative results. It may seem that the model
described in this paper is a special case of Egs.
(A.1), (A.2), when k,=0. However, this is wrong,
since the direct passage to the limit when k,—0 is
incorrect, because

lim lim g(u)=s7lim lim g(u) =0
u—0 k3—0 ky—0 u—0

Appendix B

Mathematical details

The proof of inequalities in Eqs. (22,23) is based
on the following inequalities:

ci'(c) — i(c) >0, (cv(c) — i(s) > 0), Ve = (B.1)

locy <Oy (B.2)

In order to prove Egs. (B.l), we consider the
function ¢(c) = ci'(c) — i(c). Differentiating ¢ and
accounting for Eq. (12), we obtain ¢'(c) = cv'(c) >
0. This means that the function ¢(c) monotonically
increases and @(6) > @(s) = sv(s) >0, i.e., §>s. In
particular, from the inequality in Eqgs. (B.1), the
validity of the left part of Eq. (15) follows. The right
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part of Eq. (15) follows from Eq. (12), since v(0) =
0.

In order to prove Egs. (B.2), we substitute the
expression for y obtained from Eq. (21) by excluding
f

0i'(0)l,c,

loCo < 9@y — it0) ~

By dividing by [,c, and accounting for Egs. (B.1),
we get an obvious inequality i(6)>0.

In order to prove Eq. (22), we differentiate Eq.
(21) on s and obtain:

0 ( I
= (0 - %)v'(e) — — ()

When calculating di/ds we have to keep in mind that
the flux density i depends on #(s) and 5. Hence, the
following formula is valid:

di_o1op_or_ o6

&~ a0 as  as VO G TV

Together with Eqs. (B.2) and Eq. (12), we obtain
06/ ds <0. Differentiating ¢_._ on s, one obtains:

min

By, —y'(0) (ﬁ) .

s v¥e) ds

Finally, differentiating Eq. (26) on s, we have:

aw _ .{_g%_s>+ v'<0>39}<0
ds vis)  vi(@) 95

Let us demonstrate the analytical method for
solving Eqgs. (17,18). Eq. (17), accounting for Eq.
(13), has the form:

dx i)

G- =i OLE©=v0)

Excluding x, we obtain:

ci" dc . dr
ci'(cy—ic) ~ 1’

then integrating it, we derive Eq. (19):
) K
cv(c) — ilc) = D K=l,,

where K is the integration constant. The value of K
is derived from Egs. (15,16,18) and the fact that
c(xg.ty) = cq
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